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Abstract. Neutron diffraction measurements have been performed to determine the magnetic
phase diagram of the stacked-triangular antiferromagnet CsNi0.98Fe0.02Cl3 betweenT = 1.8 K
andT = 6 K in static magnetic fields up toB = 5 T applied perpendicular to thec-axis. The
substitution of a few per cent of Fe2+ for Ni2+ leads to a compensation of the weak Ising
anisotropy of the pure compound, and induces anXY -anisotropy in the doped system. The
magnetic phase diagram displays three different magnetically ordered phases with a multicritical
point at B = 2 T and T = 4.3 K. The phase diagram and the spin configurations of the
different phases are found to be consistent with theoretical predictions for stacked-triangular
antiferromagnets with a weak easy-plane anisotropy. The spin ordering at zero field exhibits a
120◦ structure in the basal plane with inherentXY - and chiral degeneracy. We have determined
the critical exponent of the sublattice magnetization to beβ = 0.23(1), which is close to the
theoretical valueβ = 0.25 of anXY chiral antiferromagnet.

1. Introduction

In hexagonal ABX3 compounds the presence of spin frustration resulting from anti-
ferromagnetic coupling in the stacked-triangular lattice causes a rich variety of phase
transitions [1] including new universality classes linked to the chiral degeneracy inherent
to the 120◦ ordered spin structure [2]. The magnetic phase transitions in stacked-triangular
lattice antiferromagnets (STAL-AF) depend remarkably on the spin symmetry and anisotropy
[3, 4]. The compounds RbMnBr3 [5] and CsMnBr3 [6] with XY -anisotropy exhibit a single
transition at zero field characterized by novel critical exponents, which splits into two
successive transitions under a finite magnetic field applied in the basal plane. In contrast,
CsNiCl3 [7], CsNiBr3 and CsMnI3 [8, 9] with Ising anisotropies show two successive
transitions at zero fields, merging into a single transition at a multicritical point for a finite
field parallel to thec-axis. In addition, a line of spin-flop transitions is linked to this
point. Although the strength of the anisotropy is different, scaled phase diagrams display
a universal behaviour in each case except for an additional phase boundary associated
with an incommensurate spin structure in RbMnBr3 [4]. From this point of view, it is
interesting to study the effect of anisotropy on the magnetic phase transitions of a typical
ABX 3 substance by systematically varying the anisotropy in a continuous manner. This can
be achieved by the substitution for a certain amount of B ions with magnetic ions with a
different kind of single-site anisotropy in order to tune the effective anisotropy of the system.
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The effectiveness of this method is caused by the fact that the compounds are quasi-1d
antiferromagnets, where the magnetic moments interact strongly in the stacking direction
c, thereby averaging the anisotropy over many ions. It should be noted, however, that
random substitution inevitably makes the system more or less inhomogeneous. Recently,
an ultrasonic study of the magnetic phase diagrams of CsNi0.98M0.02Cl3 (M = Co, Fe,
Mg) has been reported by Trudeauet al [10]. Here, the Fe-doped compound is of special
interest, because this system changes toXY -anisotropy, while Co- and Mg-doped samples
display phase diagrams with the same general features as the Ising-type CsNiCl3. As
stated by Trudeauet al, the Fe2+ ions are known to exhibit a strongXY -anisotropy in
the ABX3 matrix, cf. e.g. CsFeCl3 [11]. Since the Ising-like behaviour of CsNiCl3 is
weak, a compensation is easily possible. As a result, the observed phase diagram of
CsNi0.98M0.02Cl3 presents characteristics of the STAL-AF withXY -anisotropy such as
CsMnBr3 and RbMnBr3.

Here, we report neutron diffraction results on CsNi0.98Fe0.02Cl3 clarifying the magnetic
phase diagram and the spin structures of the three different ordered phases. In addition,
the critical exponentβ of the sublattice magnetization has been determined to confirm the
chiral degeneracy of the zero-field structure.

2. Experiment

We used for this experiment the double-axis diffractometer E4 at BENSC. A wavelength
λ = 2.46 Å was selected by a pyrolytic graphite (PG) monochromator. Higher-order
wavelength contributions were suppressed by using a PG filter. The beam collimation was
chosen to be 40′–40′–40′. Our single-crystal sample with a volume of approximately 0.3 cm3

was mounted in a vertical cryomagnet with(1, 1, 0) and (0, 0, 1) reciprocal-lattice vectors
in the scattering plane. The deviation from an ideal 90◦ orientation between the field and the
c-axis was smaller than 1◦. The intensities at the magnetic Bragg positions(1/3, 1/3, 1)

and (4/3, 4/3, 1) were measured as a function of temperature (1.8 K6 T 6 6 K) and
magnetic field (0 T6 B 6 5 T). In addition, the integrated intensities of several magnetic
Bragg reflections were determined at certain points of the (B, T ) phase diagram. To obtain
the critical exponentβ the (1/3, 1/3, 1) reflection was measured at zero field by scanning
along (1, 1, 0). The temperature stability was better than1T = ±3 mK in the range of
interest between 4 K and 5.5 K.

3. Results

Figures 1 and 2 show the intensities at the magnetic Bragg positions(1/3, 1/3, 1) and
(4/3, 4/3, 1) versus temperature for different magnetic fields applied along(−1, 1, 0). Two
phase transitions I–II and II–III are clearly visible up toB ≈ 2 T in the temperature
dependence of both reflections. AboveB = 2 T a new transition (II–IV) appears slightly
below the phase boundary between the ordered and the paramagnetic phase. The spin
reordering leads to an increase of the intensity of the(4/3, 4/3, 1) Bragg reflection, while it
has almost no effect on the(1/3, 1/3, 1) reflection. Hence a spin component perpendicular
to (4/3, 4/3, 1) but not to(1/3, 1/3, 1) must be involved at the II–IV transition. Considering
that (1/3, 1/3, 1) contains a large(0, 0, 1) component, while(4/3, 4/3, 1) is mainly
along (1, 1, 0), we conclude that the low-temperature structure IV involves an ordered
z-component of the spins. The smooth increase of the slope of the sublattice magnetization
indicates a broadened transition. Therefore, the transition temperaturesTN1 andTN2 were



The phase diagram and critical behaviour of CsNi0.98Fe0.02Cl3 705

Figure 1. Intensities at the magnetic Bragg position(1/3, 1/3, 1) versus temperature at magnetic
fields up toB = 2.5 T.

Figure 2. Intensities at the magnetic Bragg positions(1/3, 1/3, 1) and (4/3, 4/3, 1) versus
temperature at high magnetic fields. A second phase transition is indicated by the sudden
increase of the intensity of the(4/3, 4/3, 1) reflection.

determined by fitting two lines with different slopes and one line for the constant background
aboveTN1 to the intensity curves around the phase transitions (see figure 2).

Field scans at constant temperature were performed to determine the phase boundary
at low temperatures. The measurements show a broad transition, as is visible in figure 3.
The intensity decreases gradually from a higher plateau in phase III to a lower one in phase
IV. This behaviour could either indicate a smeared transition, or two transitions with an
intermediate phase. To illustrate both possibilities, we determined the transition region with
one critical fieldBc at the point of inflection and two threshold fieldsBt1 andBt2 at 5% and
95% of the total intensity decrease. The resulting phase diagram is presented in figure 4.
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Figure 3. The intensity at the magnetic Bragg position(1/3, 1/3, 1) versus the magnetic field.

Figure 4. The magnetic phase diagram of CsNi0.98Fe0.02Cl3. The shaded area represents the
width between 5% and 95% of the whole intensity decrease of the phase transition.

Three phase boundaries meet at the multicritical pointB = 2.0(2) T andT = 4.3(1) K.
The observed Bragg intensities measured at different points of the (B, T ) diagram

are listed in table 1. We found the data at zero field to be in good agreement with the
calculated intensities of the expected helical structure in the basal plane (R = 4.9%). For all
calculations the isotropic approximation of the ionic Ni2+ form factor was used [12]. The
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Table 1. The magnetic intensities observed at different points of the phase diagram compared
to the calculated intensities for the models shown in figure 4:B = 0 T, T = 1.8 K (phase III),
B = 3.5 T, T = 1.8 K (phase IV),B = 3.5 T, T = 4.80 K (phase II). TheR-factor is defined
asR = ∑

(I (obs) − I (calc))2/
∑

I (obs)2. I ′(calc) for phase II is explained in the text.

Phase: III IV II

hkl I (obs) I (calc) I (obs) I (calc) I (obs) I (calc) I ′(calc)

1/3 1/3 1 967 986 591 604 189 201 192
2/3 2/3 1 577 570 398 398 86 83 88
4/3 4/3 1 204 210 171 172 18 14 21
7/3 7/3 1 — 68 88 60 8 2 5
1/3 1/3 3 272 221 159 126 61 51 47
2/3 2/3 3 204 191 122 112 42 42 39
4/3 4/3 3 136 121 92 77 — — —

R-factor 4.9% 6.2% 7.2% 6.9%

intensities measured atB = 3.5 T andT = 1.8 K favour a slightly distorted helical structure
perpendicular to the field axis. In this structure one of the three spins on a triangle points
along(1, 1, 0) and the other two enclose an angle of±55(2)◦ with (−1, −1, 0), as shown in
the upper part of figure 4. TheR-factor obtained is 6.2%, whereasR = 7.2% is calculated
for a 120◦ structure perpendicular to the field direction. The finite easy-plane anisotropy
causes this slight deviation from the 120◦ order. An additional canting towards the field
axis can be expected, giving rise to scattering contributions at nuclear Bragg positions.
However, the strong nuclear intensity masks this small magnetic contribution, which could
not be detected even atB = 5 T. The spin ordering in phase II will be discussed in the
next section in comparison with theoretical predictions.

The temperature dependence of the zero-field order parameter was studied by scanning
the (1/3, 1/3, 1) reflection along (h, h, 0) (perpendicular to the chain axisc) at different
temperatures. Figure 5 shows the data atT = 4.70 K very close toTN after subtraction
of a constant background. Integrated intensities were obtained by fitting the data using
a Gaussian with fixed width for the Bragg intensity and a Lorentzian for the critical
scattering. The width of the Gaussian and the constant background were determined at
the base temperature of the4He cryostat,T = 1.8 K. Although the correction of the
critical scattering is essential only very close toTN , all scans were treated using the
same two-profile fit. The chosen counting times were optimized for good statistics of the
Bragg intensities, and were not sufficient for an accurate determination of the temperature
dependence of the critical scattering. No significant effect due to extinction, which can be
a source of serious error in the determination ofβ, was observed after the refinement
of the magnetic zero-field structure, where an empirical extinction factor was used as
an additional parameter. The Gaussian integrated intensity is shown in figure 6 versus
reduced temperature. A least-squares fit with the power lawI ∝ ((T − TN)/TN)2β gives
TN = 4.66(2) K and β = 0.23(1). However, deviations from a straight line are visible
in the double-logarithmic plot. Moreover, some Bragg intensity remains above the value
determined forTN . Obviously, the random distribution of Fe2+ ions on Ni sites causes a
broadening of the Ńeel temperature. This is reasonable because the random distribution
of the Fe2+ ions on the Ni sites could lead to local variations in the effective interactions
and anisotropy. We have tried to convolute the power law with a Gaussian distribution
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of TN . The fit shows an excellent agreement with the data for a Gaussian broadening of
(FWHM)TN

= 2.35σ = 0.172(2) K (figure 6(b)), and gives the same values,β = 0.23(1)

and TN = 4.67(2) K, as determined above. Note that(FWHM)TN
is still much smaller

than the difference of the two Ńeel temperatures of the pure compound,TN1 = 4.84 K and
TN2 = 4.40 K. This confirms that the phase boundaries I–II and II–III do indeed merge into
a single phase transition at zero field.

Figure 5. The (1/3, 1/3, 1) magnetic Bragg reflection with critical scattering measured at
T = 4.70 K. The data are fitted by a Gaussian plus a Lorentzian. The width of the Gaussian is
fixed to the value at the base temperature (T = 1.8 K).

Close to B = 0, the phase boundaries I–II and II–III follow a power lawH 2 =
Ai |T − TN |φi where i = I–II, II–III, respectively. We obtainφI−II = 1.12(10) and
φII−III = 1.01(30) using data for below 2 T. For this analysis, the Néel temperature
at B = 0 was determined using the same method as for the field data, giving a somewhat
higher value ofTN = 4.75 K compared toTN determined above.

4. Discussion

The phase boundaries I–II, II–III and III–IV are in good agreement with the phase diagram
determined recently from ultrasonic experiments [10]. The phase boundary II–IV, however,
was not detectable in the ultrasonic velocity data. In the low-field part, the phase diagram
resembles those of other hexagonalXY -antiferromagnets, CsMnBr3, RbMnBr3 and CsVX3,
which all show the tetracritical point atB = 0 and have the 120◦ helical structure
and a distorted helical structure at zero and low-field values, respectively. The phase
transition II–IV does not appear in these systems, indicating a significant difference between
CsNi0.98Fe0.02Cl3 and all other known STAL-AF with easy-plane anisotropy. Note that the
phase diagram of RbMnBr3 is further complicated by an incommensurate–commensurate
phase transition, which is caused by deviations from the hexagonal symmetry in the(a, b)

plane. Hence the phase diagram is only accidentally similar to that of CsNi0.98Fe0.02Cl3.
An overview of the variety of possible phase diagrams for triangular lattices obtained

as the anisotropy is varied has been given by Plumeret al on the basis of a Landau-type
mean-field theory [1]. A phase diagram with three ordered phases, similar to the observed
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Figure 6. A double-logarithmic plot of the(1/3, 1/3, 1) magnetic Bragg intensity versus reduced
temperature. Two different fits were used to determine the critical exponentβ andTN : a pure
power lawI ∝ ((TN − T )/TN )2β (a), and a power law convoluted with a Gaussian distribution
of TN due to the random substitution of Fe2+ for Ni2+ (b).

one, is included in this theory for the case of a weakXY -anisotropy, whereas only two
ordered phases appear in case of a strong anisotropy. The phases II, III, IV correspond to
the notation 5, 7 and 3, respectively. Additional anisotropy terms up to fourth order can
produce more complex phase diagrams, including the appearance of an intermediate phase
8 between phases 7 and 3 (III and IV).

The detailed reorientation processes of hexagonal antiferromagnets with weakXY -
anisotropy due to an applied magnetic field have been studied in recent papers using a
Landau theory on the basis of the Heisenberg Hamiltonian

H = 2J
∑

i

SiSi+1 + 2J ′ ∑
i 6=j

SiSj + D
∑

i

(Sz
1)

2 − H
∑

i

Si . (1)

Rastelli and Tassi [13] numerically determine theT = 0 minimum of the classical
energy, while Abarzhi and Chubukov [14] give their results up to first order in the reduced
parametersd = D/2J andj = J ′/J . Their results are generally the same, but they differ
with respect to the explicit values of the transition fields. In agreement with [1], both
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[13] and [14] predict two ordered phases in the case of strongXY -anisotropy, a (distorted)
helix phase H and a fan phase F, while in the weak-anisotropy caseD < D0 ≈ 3J ′ an
additional phase, the umbrella phase U, should appear between the distorted helix and the
fan phase. The phase transition between H and U is of first order and all other phase
transitions should be second order. For a comparison of our experimental results with the
theoretical predictions we used the equations given in [13]. The six spins of the magnetic
unit cell can be represented by classical vectorsS = S(sinθs sinφs, sinθs cosφs, cosθs)

with x ‖ (1, 1, 0), y ‖ (−1, 1, 0) ‖ B, andz ‖ (0, 0, 1). The minimum of the free energy
is related to certain restrictions between the polar and azimuthal angles, which are

θs = 90◦ s = 1, . . . , 6

φ4 = −φ1 φ5 = −φ3 φ6 = −φ2
(2)

for the H phase, additionallyφ2 = φ3 for the F phase, and

θ4 = θ1 = 90◦ θ6 = θ2 = 180◦ − θ5 = 180◦ − θ3

φ4 = −φ1 φ5 = φ6 = −φ2 = −φ3.
(3)

for the U phase. Thus, the spin configurations are characterized by only three (two)
azimuthal angles in the H (F) phase, and one polar and two azimuthal angles in the U
phase. These angles are determined by the parametersB/J , J ′/J andD/J .

The spin structure of the H phase atB = 0 is the antiferromagnetic 120◦ structure,
which distorts at finite field, but remains in the easy plane. We conclude from our zero-field
results on CsNi0.98Fe0.02Cl3 that phase II corresponds to the H phase.

In the umbrella phase U, one spin of a triangle (S1) is in the basal plane, while the other
two (S2, S3) include an angle of 90◦ − θ2 < 60◦ with the basal plane. Our refinement of the
intensity data measured atB = 3.5 T andT = 1.8 K (phase IV) is in agreement with this
structure for a canting angleθ2 = 35(2)◦. The azimuthal anglesφ1 and φ2 correspond
predominantly to a spin rotation towards the field axis resulting in a ferromagnetic
component, and, thus, could be only roughly estimated (0◦ < φ1, 180◦ − φ2 < 10◦). We
have used equations (2.6) and (2.8) of [13] to estimateD from the polar angle determined,
θ2 = 35(2)◦, and the coupling constants,J ′/kB = 0.29 K andJ/kB = 16.6 K, of pure
CsNiCl3 [15]. Since the phase transition temperatures of CsNiCl3 and CsNi0.98Fe0.02Cl3 are
almost the same, we do not expect significant differences between their exchange interactions
J ′ andJ .

The calculation yields the valuesD/kB = 0.2(1) K, φ1 ≈ 2◦, andφ2 ≈ 176◦. However,
this anisotropy value corresponds to a transition field of about 5 T between the distorted
helix and umbrella phase, considerably higher than the observed transition field of about
2.2(5) T. The observed transition field requiresD/kB = 0.03(2) K and leads to a canting
angle θ2 = 30.5(5)◦, which is not consistent with our intensity data. A part of this
discrepancy might be attributed to the application ofT = 0 calculations to explain data
taken at finite temperatures. A temperature-dependent canting angle is known to exist in
hexagonal antiferromagnets with weak Ising anisotropy [16, 17], where the canting angle
with respect to the Ising axis increases slightly when one lowers the temperature. A similar
effect can be expected in the umbrella phase of the weakXY -antiferromagnet, because the
easy-plane anisotropy combined with the magnetic field induces an effective Ising anisotropy
alongx. Thus, the discrepancy might be reduced at lower temperature. On the basis of the
present analysis we, therefore, estimated 0.03 K < D/kB < 0.2 K.

The fan phase F is characterized by a collinear order alongx with the propagation vector
(1/3, 1/3, 1). In the classicalT = 0 treatment this phase occurs for weak anisotropies in
a narrow field range slightly below the saturation field. Since the fan structure can be
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Figure 7. A schematic plot of the expected phase diagram of hexagonalXY -antiferromagnets
with weak anisotropy (D < 3J ′) with the notation of Rastelli and Tassi.

identified with phase 5 in the low-field results of Plumeret al, we expect the schematic
phase diagram to look like the one illustrated in the figure 7. At low fields and high
temperature a spin component perpendicular tox remains disordered. The partial order can
be compared to the intermediate phase of CsNiCl3, where only the spin component along
the Ising axis is ordered, while the perpendicular component remains fluctuating. In the
weak XY -case, complete long-range order is gradually achieved towards high fields and
T = 0 via an increasing uniform component parallel to the field axis. The Bragg intensities
measured in phase II atB = 3.5 T, T = 4.80 K can be reasonably fitted by the collinear fan
structure, where only the projection of the spin onto thex-axis is ordered as shown in the
upper part of figure 4 (I (calc) in table 1). However, the calculated intensity of(7/3, 7/3, 1)

for this structure is too small compared to observation. This indicates the contribution of
a spin component perpendicular to(1, 1, 0). Including a partly orderedy- or z-component
does not improve the fit significantly, theR-value remaining unchanged. Considering that
the phase transitions in this doped compound are rather broad, and the data being taken only
≈0.15 K above the II–IV phase boundary, it is probable that the observation of additional
intensity at(7/3, 7/3, 1) results from regions of the sample already in phase IV. A two-phase
refinement converges to a mixture of≈30% of phase IV and≈70% of phase II (I ′(calc) in
table 1). As the broadening ofTN at zero field can be described by a Gaussian distribution
with (HWHM)TN

= 0.086 K, a 30% contribution of phase IV should occur about 0.1 K
aboveTN2. We conclude that the intermediate phase II does indeed exhibit the predicted
collinear order.

The observed decrease of all measured magnetic Bragg intensities between the distorted
helix and umbrella phases extends over more than 1 T, which is unusually broad for an
expected first-order transition. However, the random distribution of Fe2+ ions in this doped
system has to be taken into consideration, which can drastically broaden the width of the
transition due to local variations of anisotropies. Moreover, de Groot and de Jongh [18]
argue that soliton excitations in quasi-1d antiferromagnets withXY -anisotropy always lead
to a significantly broadened spin-flop transition at finite temperature. On the other hand, an
intermediate phase with two second-order phase boundaries—as calculated by Plumeret al
for a certain configuration of fourth-order anisotropies—cannot be excluded.

The helical zero-field structure is degenerate with respect to a discrete symmetry



712 M Winkelmann et al

operation which reverses the helicity on a given triangle. The theoretically proposed new
chiral XY universality class for theB = 0 transition exhibits critical exponents considerably
different from those of the non-chiral classes [2]. The calculated exponent of the order
parameter has the valueβ = 0.253(10) in the chiralXY -class, while it is 0.346(1) in the
non-chiralXY -class. Neutron scattering experiments at the tetracritical point of CsMnBr3

have confirmed the chiralXY -value (0.22(2) [19], 0.25(1) [20], 0.24(2) [6]), but no other
system has been tested so far. Our value of 0.23(1) is again in excellent agreement with
the theoretical value of the chiralXY universality class.

In CsNi0.98Fe0.02Cl3 as in CsMnBr3, RbMnBr3 and CsVX3 (X = Cl, Br, I), the fan
phase opens at low magnetic fields between the paramagnetic phase and the distorted helix
phase. According to Kawamuraet al [21] both phase boundaries I–II (paramagnet–fan) and
II–III (fan–distorted helix) should followH 2 ∝ |t |φ with φ ≈ 1.04. This behaviour has
been observed in CsMnBr3 (φI−II = 1.21(7), φII−III = 0.75(5) [6], φI−II = 1.02(5),
φII−III = 1.07(5) [22]), CsVBr3 (φI−II = 0.78(6), φII−III = 0.79(6) [23]) and
RbMnBr3 (φI−II = 1.07(25), φII−III = 1.00(35) [24]). The results for CsNi0.98Fe0.02Cl3
(φI−II = 1.12(9), φII−III = 1.01(20)) fit nicely into this series.

5. Conclusion

From the excellent agreement of the observed magnetic phase diagram with the theoretical
predictions we conclude that CsNi0.98Fe0.02Cl3 represents the weak-anisotropy case of a
STAL-AF, while CsMnBr3 and RbMnBr3 are examples with strongXY -anisotropy. The
CsVX3 compounds are expected to belong to the weak-anisotropy case [13, 14], but this
prediction could not be confirmed so far. Hence, in CsNi0.98Fe0.02Cl3, the umbrella phase
has been observed for the first time. Our values ofβ and φ confirm once more that the
tetracriticalB = 0 point of a STAL-AF withXY -anisotropy belongs to the new chiralXY

universality class, and in addition that doping of CsNiCl3 with Fe2+ is an effective means
to induce and manipulateXY -anisotropy in this system.
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